
Eigenvalue spectra of spatial-dependent networks

Joris Billen, Mark Wilson, and Arlette Baljon
Department of Physics, San Diego State University, San Diego, California 92128, USA

Avinoam Rabinovitch
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

�Received 8 May 2009; revised manuscript received 14 August 2009; published 21 October 2009�

Many real-life networks exhibit a spatial dependence; i.e., the probability to form an edge between two
nodes in the network depends on the distance between them. We investigate the influence of spatial dependence
on the spectral density of the network. When increasing spatial dependence in Erdös-Rényi, scale-free, and
small-world networks, it is found that the spectrum changes. Due to the spatial dependence the degree of
clustering and the number of triangles increase. This results in a higher asymmetry �skewness�. Our results
show that the spectrum can be used to detect and quantify clustering and spatial dependence in a network.
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I. INTRODUCTION

An increase in computational resources has led to a con-
siderable interest in complex networks over the last decade.
Initially most studies handled networks in the dimensionless
network space. Many real-life networks, however, live in a
geographic space in which it is more favorable to form edges
between nodes that are close to each other. For this reason
interest in these spatial networks �SN� has increased in the
last few years. SN can be found in the fields of communica-
tion �Internet �1��, biology �neural networks �2��, transporta-
tion �airport �3,4�, rail �5�, and road networks �3��, social
networks �6� �friendships�, and disease spreading �7�. To de-
termine the existence of spatial dependency of a network one
can look at several measures �3�. A spatial measure is the
distribution of the Euclidean distance �ED� between nodes.
In contrast, the so-called graph distance measures the num-
ber of edges traversed along the shortest path from one ver-
tex to another �path length�. In this work we propose a more
prominent method to detect spatial dependence based on the
spectral density of a network.

The eigenvalue spectrum of the adjacency matrix of a
graph contains information related to important topological
features of the graph. Therefore, it could also reflect the
structural changes induced by spatial dependence. Eigen-
value spectra have been extensively studied for most com-
mon network models such as Erdös-Rényi �ER� random
graphs, small-world �SW� networks, and scale-free networks
�8�. In this work we study the influence of spatial depen-
dence on the spectra of these networks in Euclidean space. In
Sec. II we define the spectral density and its properties. In
Sec. III, the models are introduced. The resulting spectra are
presented in Sec. IV. Section V discusses the results.

II. EIGENVALUE SPECTRUM OF NETWORKS

The spectrum of a graph is the set of eigenvalues, � j, of a
graph’s adjacency matrix A �8�. The graphs under investiga-
tion are undirected and devoid of loops and multiple edges.
Hence, the adjacency matrix is real and symmetric, possess-
ing real eigenvalues �9�. The spectral density of a graph with
N nodes can be defined as

���� =
1

N
�
j=1

N

��� − � j� . �1�

Since the spectrum contains all the topological information
of the graph, it can be used to classify the network. The
spectra of ER random, scale-free, and small-world structures
in dimensionless network space have been studied exten-
sively �8�. For the ER random network, the spectral density
exhibits a Wigner semicircle. The scale-free network dis-
plays a symmetric triangular bulk spectrum. A small-world
network is constructed by placing nodes on a circle, connect-
ing the k nearest neighbors �NN�, and then randomly rewir-
ing each edge with a probability p �10�. At p=0 the small-
world network has a regular structure and at p=1 it becomes
ER. The spectrum of the small-world network exhibits sev-
eral peaks for small p values because of its regularity �8� and
it transitions to the semicircular shape when p approaches 1.

The moments of the spectral density of a graph are related
to its topology and the sth moment of ���� can be written as

ms =
1

N
�
j=1

N

�� j − ��s =� �� − ��s����d� , �2�

with � as the mean eigenvalue. Since the adjacency matrix
contains no loops, its trace will be zero and hence �=0.
Ds=Nms is the so-called “number of directed paths of the
graph that return to their starting vertex after s steps” �11�.

Skewness and kurtosis are often used to describe shape
characteristics of a distribution �12� and can be used to char-
acterize the spectra. The skewness S is a measure of the
asymmetry of a distribution and is defined as

S =
m3

m2
3/2 =

N−1�
i
�i

3

�3 , �3�

with �2=m2= �k� the standard deviation �9�. The kurtosis K
is a measure of the peakedness of a distribution and is de-
fined as
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K =
m4

m2
2 − 3. �4�

For a Gaussian distribution m4 /m2
2=3 and K=0. A semicir-

cular distribution is known to have S=0 and K=−1.

III. CONSTRUCTION OF SPATIAL ER, SCALE-FREE,
AND SMALL-WORLD NETWORKS

IN EUCLIDEAN SPACE

To construct spatial ER, scale-free, and small-world net-
works, N nodes are randomly placed in Euclidean space in a
1�1�1 box. Then l edges are created, favoring ones of
shorter ED’s, leading to a network with average degree
�k�=2l /N.

Spatial dependence is obtained by choosing the probabil-
ity pi,j to form an edge between two nodes i and j depending
on the ED di,j between them:

pi,j �
di,j

−	

�
b,c

db,c
−	

. �5�

The strength of the spatial selection is determined by the
value of the “proximity factor” 	. When 	=0 there is no
spatial dependence. For 	→
 only the closest edges will be
chosen. We now discuss in more detail the construction
method for each of the three networks under investigation. In
our simulations we use N=1000 and l=5000 resulting in
�k�=10. All data result from averages over 100 configura-
tions.

A. Spatial ER network

In a spatial ER network, each possible edge receives a
connection probability as in Eq. �5� favoring nearby nodes
�	�0�. Once an edge is formed, the probability for creating
that edge is set to zero and the new probabilities are calcu-
lated. Repeating this process l times, a network with a Pois-
son connectivity distribution with a peak at �k�=2l /N is ob-
tained. Alternatively, we could have formed an edge between
each pair of nodes with a certain probability p �9�. This
would have given roughly the same results.

Table I shows the average ED for different values of 	.
For higher 	, shorter edges are formed. The clustering coef-
ficient �13� as a function of average path length over all
nodes is shown in Fig. 1�a�. The effect of proximity is visible

by a strong increase in the clustering coefficient and a mod-
erate increase in path length.

B. Spatial scale-free network

For constructing a spatial scale-free network we follow a
procedure based on Ref. �14�:

�1� Select at random a subset of n0 nodes and connect
them. Nodes that have connections are called active.

�2� Take an inactive node i at random and connect it with
an active node j with probability �up to a normalization fac-
tor�

pi,j � �kj + 1�di,j
−	, �6�

where kj is the degree of node j and di,j is the ED between
nodes i and j.

For each of the nodes, we repeat step �2� m=5 times until
all nodes are active. The degree distribution for 	=0 shows a
drop-off with a power law and �k�=2m=10. For large values
of 	 the proximity effect limits the choice of available con-
nections thereby limiting the degree distribution, resulting in
a deviation from a power-law behavior, as predicted in �14�.

The effect of proximity is an increase in the clustering
coefficient �Fig. 1�b��. The path length is smaller than that of

TABLE I. Average ED for spatial-dependent networks.

	 0 2 4 6 8 10

ER/SW, p=1.00 0.480 0.328 0.169 0.120 0.109 0.105

SW, p=0.75 0.386 0.278 0.278 0.278 0.107 0.104

SW, p=0.50 0.291 0.224 0.143 0.113 0.106 0.103

SW, p=0.25 0.195 0.165 0.125 0.109 0.104 0.102

Lowest cost/ER 	→
 0.100 0.100 0.100 0.100 0.100 0.100

SF 0.480 0.339 0.196 0.147 0.133 0.128
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FIG. 1. �Color online� The average clustering coefficient over all
nodes as a function of the path length for spatial-dependent net-
works. �a� Random ER for different 	. The data point for 	→

corresponds to the lowest cost network. �b� Spatial-dependent scale-
free network for different 	. �c� Small-world network for 	=3 and
	=6 for different p. For comparison, data of Fig. 1�a� are shown as
well.
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an ER network due to the presence of hubs with a very high
degree.

C. Spatial small-world network

In a dimensionless SW network, a regular structure is ob-
tained by placing N nodes on a ring and connecting each of
them to its �k� nearest neighbors �10�. Then each edge is
rewired with a probability p. For intermediate p the system
shows the small-world property characterized by a small
path length and a high clustering coefficient. For p=1 the ER
random network is obtained, exhibiting a small path length
and a low clustering coefficient. For p=0 the regular network
stays intact.

For the small-world network in 3D Euclidean space, we
create a lowest cost configuration as the analogy of the regu-
lar structure. A lowest cost structure is found in brain net-
works where the cost of edges is optimized �15�. This struc-
ture is obtained by calculating the distance between all
possible pairs of nodes and connecting the N�k� /2 ones that
are closest to each other. The construction method for the
spatial SW is therefore as follows:

�1� Calculate the ED between every possible pair of nodes
and connect the N�k� /2 closest ones. This is the lowest cost
network.

�2� Consider rewiring each edge with a certain probability
p. If rewiring takes place, the current edge is destroyed and
replaced by a new edge, while closer edges are favored de-
pending on 	 according to Eq. �5�. During the rewiring pro-
cess, creation of every possible edge is allowed, but only
once �16�. At the end of this rewiring cycle double edges can
exist �except for p=0 or p=1�.

�3� The “doubles” that exist after the rewiring cycle are
now rewired, but this time only nonexisting edges are al-
lowed. Hence, in the final configuration there are no multiple
edges.

The network is completely determined by two parameters:
the rewiring probability p and the proximity factor 	. Note
that the SW with proximity network for p=1 and a certain 	
will correspond to the spatial ER for the same 	. We see
from Fig. 1�c� for 	=3 that the clustering coefficient for the
small-world network is always higher than that for the ER
for intermediate values of p. For p=0 and p=1 both net-
works have the same clustering coefficient. p=0 is the lowest
cost network with the shortest edges possible and is identical
with the ER network with 	→
. For 	=5 similar results are
found. Again, Table I shows that for higher proximity, the
average ED decreases.

D. Eigenvalue spectrum of spatial networks

The spectral densities for the ER random network for dif-
ferent values of 	 are shown in Fig. 2�a�. As expected for
	=0 we find a semicircle. For 	=5 the spectrum is asym-
metric. The peak shifts to the left and the right tail becomes
fat. For 	=10, −1 is the most abundant eigenvalue.

The spectrum for the scale-free network is shown in Fig.
2�b�. Without proximity a triangular shape is found. For in-
creased 	 the peak of the spectrum shifts to the left while the

right-hand tail becomes fatter, and for 	=10 the peak is at
−1.

The small-world network with no proximity is shown in
Fig. 2�c�. p=1 corresponds to an ER network. For lower p
values the peak shifts to the left and the right tail becomes
heavier. For the lowest cost network, p=0, we find a peak at
−1 and a very fat tail to the right. The small-world network
for 	=5 is shown in Fig. 2�d�. For p=1 the small-world
network again corresponds to the ER network with 	=5. For
decreasing p there is a transition to the lowest cost network
�p=0� and the peak at −1 becomes more prominent.

All spectra show an increased asymmetry with increased
	. In order to quantify this effect we investigate the skew-
ness S of the spectra in Fig. 3. For the semicircle the skew-
ness is slightly higher than 0. This is due to the finite system
size. As we will argue in Sec. IV, for N→
, S→0 in an ER
network. For increased 	 the network becomes more posi-
tively skewed and S increases. The lowest cost network
shows the highest S. Next, we look at the peakedness in
terms of the kurtosis K. For the small-world and the ER
random networks, the kurtosis increases with 	. For the
semicircle K is close to −1 as expected. The lowest cost
network has the highest K. For the scale-free network the
kurtosis decreases for small 	 and then increases for higher
	.
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FIG. 2. �Color online� Eigenvalue spectra for spatially depen-
dent networks: �a� ER, �b� scale-free, �c� small-world for 	=0, and
�d� small-world for 	=5.
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FIG. 3. �Color online� Skewness �a� and kurtosis �b� for spatial-
dependent networks.
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IV. DISCUSSION

A. Skewness

To understand the observed asymmetry in Fig. 2 and the
increase in skewness with 	 in Fig. 3�a�, we go back to the
definition of skewness, Eq. �3�. This can be transformed into

S =
D3

N�3 . �7�

Since �2=m2= �k� �9� is independent of 	, the skewness is
directly dependent on the number of directed paths �DP�
starting from a vertex and returning to that vertex after three
steps, D3. We studied the general Ds behavior for an ER
network, a spatial ER network, and the lowest cost network
�Fig. 4�. The ER network with 	=0 has a significantly lower
number of DP with odd s than DP of even s. This zigzag
pattern is a consequence of the fact that, except for a few
connections, a random graph looks like a tree and a tree has
no DP of odd length. An ER network has no DP of odd
length for N→
 �8�. The number of DP with two steps D2
=Nm2=N�k� is independent of 	. As a result of the spatial
dependence there is a strong increase in D3 and D5. We can
understand the increase in D3 with 	 �Fig. 4� by comparing
the number of triangles T for the ER network with the num-
ber for a spatial network using a regular lattice. On a triangle
one can define six directed paths �starting from each of the
tree nodes and going either clockwise or counterclockwise�.
Hence,

D3 = 6T , �8�

where T is the number of triangles. A triangle consists of
three nodes all having degree k=2. Consider an ER network
and start from a specific node. There are on the average � �k�

2 �
possible choices to pick two of its neighbors. The probability
that these two neighbors are connected and a triangle is
formed equals the total number of links l=N�k� /2 divided by
the total number of possible links N�N−1� /2. Therefore, the
number of triangles in the ER network is

T =
N

3

�k�!
��k� − 2� ! 2!

N�k�
2

2

N�N − 1�
	

1

6
�k�2�k − 1� . �9�

The 1/3 comes from overcounting �each triangle has three
corners�. Combining Eqs. �7�–�9� we find

S =
�k�2�k − 1�

N�3 =
�k�1/2�k − 1�

N
. �10�

This shows that the nonzero skewness for the ER with 	
=0 in Fig. 3 is due to the finite system size. We have verified
this finite-size effect numerically. We have also observed that
in an “antiproximity” network, where 	 is negative and dis-
tant edges are favored, S→0 for 	→−
.

We now consider the number of triangles in a network
with proximity. Assume the nodes are placed on a 2D trian-
gular lattice with coordination number z=6 and that only NN
can be connected �lowest cost network�. The number of tri-
angles is different than the one for a simple ER network
since the probability p that the two chosen neighbors are
connected is not the same. First of all the probability that the
two chosen neighbors are NN of each other equals 2z

z�z−1�
= 2

z−1 . Second, the number of possible links equals Nz /2 in
this case. Hence, the number of triangles equals

T =
1

3
N

�k�!
��k� − 2� ! 2!

2

z − 1

�k�
z

=
N

3z�z − 1�
�k�2�k − 1� .

�11�

For large N this is substantially higher than for the ER net-
work. From Eqs. �7�, �8�, and �10� we find here

S =
2�k�2�k − 1�
�3z�z − 1�

=
2�k�1/2�k − 1�

z�z − 1�
. �12�

We note that the increase in clustering coefficient with prox-
imity observed in Fig. 1 is also due to an increase in the
number of triangles T. The clustering coefficient of a node i
with degree ki is defined as the number of triangles ti in
which vertex i participates, normalized by the maximum pos-
sible number of such triangles �13�:

ci =
2ti

ki�ki − 1�
. �13�

In a system with N nodes the average clustering coefficient

C̄ =
1

N
�
i=1

N
2ti

�ki��ki − 1�
. �14�

For large �k�, ki�ki−1� is sharply peaked around �ki�ki−1��.
In this case

C̄ =
1

N�ki�ki − 1���i=1

N

2ti =
6T

N�ki�ki − 1��
, �15�

where we have used that T= 1
3�i=1

N ti, since each triangle con-
tributes to three nodes.

For an ER network with no spatial dependence, T is in-

dependent of N; hence, both S and C̄ are inversely propor-
tional to N according to Eqs. �10� and �14�. The inverse
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FIG. 4. �Color online� The number of directed paths Ds in an ER
network without proximity �squares�, with strong proximity �	=8,
circles�, and the lowest cost network �diamonds�.
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dependence of C̄ is a well known property �9�. For lowest
cost networks, the number of triangles increases linearly with

system size N and hence S and C̄ are independent of system
size. Further, we have performed our analysis in three dimen-
sions, but since Eq. �15� is dependent solely on the number
of triangles we expect similar results for different dimen-
sions.

B. Relation between skewness and clustering coefficient

By combining Eqs. �7�–�15� and using �= �k�1/2 it is ob-
served that

S =
6T

N�3 =
6T

N�k�3/2 = C̄
�k�k − 1��

�k�3/2 . �16�

This shows that the skewness is an alternative measurement
of the clustering of a network. We have numerically verified
Eq. �16� by calculating the skewness as a function of the
clustering coefficient for different values of 	 for the spatial
ER network �Fig. 5�. The measured values �circles� are in
good agreement with the values predicted by Eq. �16� �solid
line�. For the scale-free network the condition under which
Eq. �15� is a good approximation does not hold and we find
a slope different than the one expected by Eq. �16�.

Asymmetry arises from the increase in the number of tri-
angles in a network. Therefore, any method �not only the
introduction of spatial dependence� which increases T would
also increase asymmetry. For instance, in a scale-free net-
work increased clustering can be achieved by constructing a
network in which, with a certain probability, the step of add-
ing a node with preferential attachment is replaced by the
creation of a triangle as described in �17�. We have con-
structed such networks and found indeed an increase in S,
similar to the increase in the spatial ones.

C. Peak at −1

For all spatial networks it is observed that the spectrum
peaks at −1 for high 	 values. This peak is also related to the

observed increase in the number of triangles in the spatial
network. To verify this hypothesis, we created an ER net-
work and connected some of the dead-end vertices �nodes
with degree 1� in two different ways. First, only dead-end
vertices that are both connected to a common node were
connected hence creating a triangle. Next, dead-end vertices
were chosen at random and connected. For the first method
we observed that the spectrum was a semicircle with a dis-
tinct peak at −1. The second method did not alter the semi-
circular distribution of the regular ER network. We conclude
that the peak at −1 is induced by the spatial nature of the
network. For high 	 this leads to the connection of nodes
that are close to each other, resulting in an increase in tri-
angles.

D. Kurtosis

We observed an increase in kurtosis with 	 for all SW and
ER networks �Fig. 3�b��. For increasing 	 the peak grows
and shifts to the left �Fig. 2�.

For the scale-free network, the kurtosis first decreases
�Fig. 3�b��. This is the result of a combination of two effects.
First, the pure scale-free network already has a sharp peak
and hence high kurtosis around �=0. Second, for high 	 the
degree distribution deviates from a power law �Fig. 1 in
�14��. Hence, the network is not scale-free anymore and the
sharp peak decreases. Only at sufficiently high 	 values the
peak at −1, that is characteristic of spatial dependence, ap-
pears and K increases again.

V. CONCLUSIONS

We have performed a study on the eigenvalue spectrum of
spatial networks by modeling spatial ER, scale-free, and
small-world networks. It was found that a positively skewed
spectrum is a universal property of all spatial networks. We
have shown that the increase in skewness is related to the
increase in number of triangles in the system. We believe that
the observed peak at −1 is also due to the increase in tri-
angles. Our results show that the eigenvalue spectrum can
also be used as a tool to detect clustering in a network. One
way to achieve such clustering is by spatial dependence. The
spectrum asymmetry is, therefore, a tool to study the degree
of spatial dependence. The spectrum sheds more information
on the network structure than measures such as ED distribu-
tion or path length. For instance, in a recent work the authors
have used the spectrum to determine the maximum length of
an edge in a simulated polymeric gel �18�.
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